RESTORBIOME2: Exploration and normalisation

Experiment with BU

Authors
Affiliation

Olivier Rué

Migale bioinformatics facility

Christelle Hennequet-Antier

Migale bioinformatics facility

Published

May 2, 2023

Modified

February 19, 2025

Show the code
#Use packages and functions
library(tidyverse)
library(data.table)
library(SummarizedExperiment) # manipulation RNASeq assays
library(rtracklayer) ## for annotation
#library("DEFormats")
library(edgeR)
library(kableExtra)
library(dplyr)
library(purrr)
library(stringr)
library(ggplot2)
library(reshape2)
library(mixOmics) #PCA

Read counts

The matrix of raw counts looks like that.

Show the code
#cat("EXP = ", params$my.interest)

### Get Raw Count data in edgeR object
# At gene level
#inputFile <-  "count_allSamples_BA.csv"
inputFile <- list.files("../data/counts") |> str_subset(params$my.interest)

#cat("File raw = ",inputFile,"\n")
rawdata <- fread(file.path("../data/counts",inputFile))
# rename first column gene ID to be homogenous between assays
colnames(rawdata)[1] <- "Gene_ID"
nameEXP <- params$my.interest

# genecount: count matrix
geneCount <- rawdata[,-c(1)] |> as.matrix()
row.names(geneCount) <- rawdata %>% dplyr::select(1) %>% unlist() %>% as.character()
#row.names(geneCount) %>% head()
#print(dim(geneCount))
head(geneCount) %>% kbl() %>% kable_styling() %>% 
  scroll_box(width = "100%", height = "200px")
BU_G_R1 BU_G_R2 BU_G_R3 BU_R_R1 BU_R_R2 BU_R_R3
gene-NQ510_00005 6664 6871 8076 4732 3608 3063
gene-NQ510_00010 779 898 961 801 901 621
gene-NQ510_00015 4422 4367 4641 4154 3060 2604
gene-NQ510_00020 1948 1976 1983 2681 2063 1921
gene-NQ510_00025 1 1 3 0 2 3
gene-NQ510_00030 0 0 0 0 0 0

This matrix contains raw counts from BU experiment with 3707 genes and 6 samples.

This is the experimental design.

Show the code
# create Design from sample's names in file
sampleInfo.all <- colnames(rawdata)[-c(1)] %>%
  stringr::str_split(., "[_]", simplify = FALSE) %>%
  transpose() %>%
  purrr::simplify_all() 
names(sampleInfo.all) <- c("Bacteria","Treatment","Replicate")
#sampleInfo.all$sample <- paste(sampleInfo.all$Treatment, sampleInfo.all$Rep, sep="_")
sampleInfo.all$sample <- colnames(rawdata)[-c(1)]

Design <- as.data.frame(sampleInfo.all)
Design <- Design %>% mutate( group = paste(Bacteria, Treatment, sep="_"))
Design %>% kbl() %>% kable_styling() %>% 
  scroll_box(width = "100%", height = "200px")
Bacteria Treatment Replicate sample group
BU G R1 BU_G_R1 BU_G
BU G R2 BU_G_R2 BU_G
BU G R3 BU_G_R3 BU_G
BU R R1 BU_R_R1 BU_R
BU R R2 BU_R_R2 BU_R
BU R R3 BU_R_R3 BU_R
Show the code
# Design_file <- paste("../output/Design", nameEXP, ".csv", sep="")
# write.table(Design, Design_file, row.names=FALSE, sep=",")

We used gene annotation produced using DBCAN .

Show the code
# GFF annotation file
filegff <- case_when(
  nameEXP == 'BA' ~ "../data/GFF/NC_008618_bifido_adolescentis_spikes_cazymes_dbcan.gff3",
  nameEXP == 'BU' ~ "../data/GFF/CP102263_1_Bacteroides_uniformis_spikes_cazymes_dbcan_pulpred_cc.gff3",
  nameEXP == 'BC' ~ "../data/GFF/NZ_AP012325_bifido_catenulatum_spikes_cazymes_dbcan.gff3",
  nameEXP == 'ER' ~ "../data/GFF/NC_012781_eubacterium_rectale_spikes_cazymes_dbcan.gff3",
)

# use gff produced by DBCAN
gff <- readGFF(filegff)


df_annot <- gff %>% as_tibble() %>% unnest_longer(Parent)  


# remove comulmn with all NA
df_annot <- df_annot %>% select_if(~sum(!is.na(.)) > 0) 
# Remark: duplicated gene annotation
# which(duplicated(df_annot[,"Parent"]))
# keeep the first line when multiple annotation
df_annot <- df_annot%>%
  group_by(seqid, source, type, ID, Parent) %>%
  filter(row_number() <= 1)
#glimpse(df_annot)


rawdata_annot <- left_join(rawdata[, 1], df_annot, by=c("Gene_ID" = "Parent"), keep=FALSE) %>%
  as.data.frame()

#glimpse(rawdata_annot)

In this BU experiment, the effect of each treatment (G, R) on gene expression will be explore. The number of biological repetitions is 3, 3 for G, R treatment, respectively.

Show the code
# create a SummarizedExperiment object
se <- SummarizedExperiment(assays=list(counts=geneCount),
                     rowData=rawdata_annot, colData=Design)
#print(se)

#counts matrix = assay(se)
#size of library
#libsize <- assay(se) %>% colSums()

#exemple to remove sample BT_G_Rep1
#se <- se[, se$sample !="BT_G_Rep1"]
#colData(se)
#dim(se)
#print(se)

#counts matrix = assay(se)
libsize <- assay(se) %>% colSums()
libsize %>% kbl(col.names = c("libsize")) %>% kable_styling(full_width = FALSE)
libsize
BU_G_R1 12114739
BU_G_R2 11674104
BU_G_R3 14936986
BU_R_R1 16152894
BU_R_R2 11669866
BU_R_R3 10439757

Genes with very low counts across all libraries may be filtered.

Show the code
# Filter gene with low count, at least number of biological replicates with cpm > valfilt 
#summary(libsize)
#valfilt <- round(10*1e06 / min(libsize), 1)
valfilt <- 1
nbrepbio <- min(table(colData(se)$group))
keep <- rowSums(edgeR::cpm(se) > valfilt) >= nbrepbio
#summary(keep)
se <- se[keep,]
#dim(se)

The filtering on genes is based on count per million (cpm) greater than 1 in at least 3 samples corresponding to the minimum number of biological replicates. We kept 3373 expressed genes for further analyses from 6 samples.

Normalisation

A normalization factor is calculated to take into account the different sizes of the sequencing banks (i.e. the total read count) and the distribution of reads per sample on sequencing run, as discussed [1]. Normalization by trimmed mean of M values (TMM) [2] is performed by using the calcNormFactors function from edgeR R package. It calculates a set of normalization factors, one for each sample, to eliminate composition biases between libraries.

Here, the table contains library size and normalisation factors using TMM method ordered by library size. These graphs are another way of verifying the quality control carried out during the sequencing and bioinformatics analysis steps.

Show the code
dge <- calcNormFactors(se)
#cat("Ordered library size and normalisation factors TMM's method \n")
# dge$samples
dge$samples[order(dge$samples$lib.size), ]
        group lib.size norm.factors Bacteria Treatment Replicate  sample
BU_R_R3  BU_R 10438360    1.0463761       BU         R        R3 BU_R_R3
BU_R_R2  BU_R 11668461    1.0177221       BU         R        R2 BU_R_R2
BU_G_R2  BU_G 11672885    0.9991146       BU         G        R2 BU_G_R2
BU_G_R1  BU_G 12113424    0.9809141       BU         G        R1 BU_G_R1
BU_G_R3  BU_G 14935441    0.9269379       BU         G        R3 BU_G_R3
BU_R_R1  BU_R 16150913    1.0336798       BU         R        R1 BU_R_R1
Show the code
# barplot
p<-ggplot(dge$samples, aes(x=dge$samples$sample, y=dge$samples$norm.factors, fill=dge$samples$group)) +
    geom_col() + xlab("Samples") + ylab("TMM factors") + labs(fill = "group") + theme_bw() +
    theme(axis.text.x = element_text(angle=90)) + ggtitle("TMM size factors \n")
p 

Show the code
# Library size with group
p<-ggplot(dge$samples, aes(x=dge$samples$sample, y=dge$samples$lib.size, fill=dge$samples$group)) +
    geom_col() + xlab("Samples") + ylab("Library size") + labs(fill = "group") + theme_bw() +
    theme(axis.text.x = element_text(angle=90)) + ggtitle("Library size \n")
p 

Show the code
# bp <- ggplot(dge$samples, aes(x=dge$samples$group, y=dge$samples$lib.size, fill=dge$samples$group)) + geom_boxplot() + 
#       geom_jitter(position=position_jitter(0.1)) + theme_bw() + 
#     theme(axis.text.x = element_text(angle=90)) +
#       xlab("group") + ylab("Library size") + labs(fill = "group")
# bp

Multidimensional scaling plot

Multidimensional scaling (MDS) plot shows the relationships between the samples. The top (500 genes) are used to calculate the distance between expression profiles of samples. The distance approximate the log2 fold change between the samples.

As expected, samples are grouped by treatment.

Show the code
limma::plotMDS(dge, col = as.numeric(dge$samples$group), labels = dge$samples$sample, cex=0.6, top = 500, main = "MDS plot top 500 genes")

Reproducibility token

Show the code
sessioninfo::session_info(pkgs = "attached")
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.4.2 (2024-10-31)
 os       Ubuntu 24.04.1 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  fr_FR.UTF-8
 ctype    fr_FR.UTF-8
 tz       Europe/Paris
 date     2025-02-16
 pandoc   3.1.1 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version date (UTC) lib source
 Biobase              * 2.64.0  2024-04-30 [1] Bioconductor 3.19 (R 4.4.0)
 BiocGenerics         * 0.50.0  2024-04-30 [1] Bioconductor 3.19 (R 4.4.0)
 data.table           * 1.16.4  2024-12-06 [1] CRAN (R 4.4.2)
 dplyr                * 1.1.4   2023-11-17 [1] CRAN (R 4.4.0)
 edgeR                * 4.2.2   2024-10-13 [1] Bioconductor 3.19 (R 4.4.1)
 forcats              * 1.0.0   2023-01-29 [1] CRAN (R 4.4.0)
 GenomeInfoDb         * 1.40.1  2024-05-24 [1] Bioconductor 3.19 (R 4.4.0)
 GenomicRanges        * 1.56.2  2024-10-09 [1] Bioconductor 3.19 (R 4.4.1)
 ggplot2              * 3.5.1   2024-04-23 [1] CRAN (R 4.4.0)
 IRanges              * 2.38.1  2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
 kableExtra           * 1.4.0   2024-01-24 [1] CRAN (R 4.4.0)
 lattice              * 0.22-5  2023-10-24 [4] CRAN (R 4.3.1)
 limma                * 3.60.6  2024-10-02 [1] Bioconductor 3.19 (R 4.4.1)
 lubridate            * 1.9.4   2024-12-08 [1] CRAN (R 4.4.2)
 MASS                 * 7.3-61  2024-06-13 [4] CRAN (R 4.4.1)
 MatrixGenerics       * 1.16.0  2024-04-30 [1] Bioconductor 3.19 (R 4.4.0)
 matrixStats          * 1.5.0   2025-01-07 [1] CRAN (R 4.4.2)
 mixOmics             * 6.28.0  2024-04-30 [1] Bioconductor 3.19 (R 4.4.2)
 purrr                * 1.0.2   2023-08-10 [1] CRAN (R 4.4.0)
 readr                * 2.1.5   2024-01-10 [1] CRAN (R 4.4.0)
 reshape2             * 1.4.4   2020-04-09 [1] CRAN (R 4.4.0)
 rtracklayer          * 1.64.0  2024-04-30 [1] Bioconductor 3.19 (R 4.4.0)
 S4Vectors            * 0.42.1  2024-07-03 [1] Bioconductor 3.19 (R 4.4.1)
 stringr              * 1.5.1   2023-11-14 [1] CRAN (R 4.4.0)
 SummarizedExperiment * 1.34.0  2024-05-01 [1] Bioconductor 3.19 (R 4.4.0)
 tibble               * 3.2.1   2023-03-20 [1] CRAN (R 4.4.0)
 tidyr                * 1.3.1   2024-01-24 [1] CRAN (R 4.4.0)
 tidyverse            * 2.0.0   2023-02-22 [1] CRAN (R 4.4.0)

 [1] /home/orue/R/x86_64-pc-linux-gnu-library/4.4
 [2] /usr/local/lib/R/site-library
 [3] /usr/lib/R/site-library
 [4] /usr/lib/R/library

──────────────────────────────────────────────────────────────────────────────

References

1. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2012;14:671–83.
2. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010;11:R25. doi:10.1186/gb-2010-11-3-r25.

Reuse

This document will not be accessible without prior agreement of the partners

A work by Migale Bioinformatics Facility
Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, 78350, Jouy-en-Josas, France