#Use packages and functionslibrary(tidyverse)library(data.table)library(SummarizedExperiment) # manipulation RNASeq assayslibrary(rtracklayer) ## for annotation#library("DEFormats")library(edgeR)library(kableExtra)library(dplyr)library(purrr)library(stringr)library(ggplot2)library(reshape2)library(mixOmics) #PCA
Read counts
The matrix of raw counts looks like that.
Show the code
#cat("EXP = ", params$my.interest)### Get Raw Count data in edgeR object# At gene level#inputFile <- "count_allSamples_BA.csv"inputFile <-list.files("../data/counts") |>str_subset(params$my.interest)#cat("File raw = ",inputFile,"\n")rawdata <-fread(file.path("../data/counts",inputFile))# rename first column gene ID to be homogenous between assayscolnames(rawdata)[1] <-"Gene_ID"nameEXP <- params$my.interest# genecount: count matrixgeneCount <- rawdata[,-c(1)] |>as.matrix()row.names(geneCount) <- rawdata %>% dplyr::select(1) %>%unlist() %>%as.character()#row.names(geneCount) %>% head()#print(dim(geneCount))head(geneCount) %>%kbl() %>%kable_styling() %>%scroll_box(width ="100%", height ="200px")
BU_G_R1
BU_G_R2
BU_G_R3
BU_R_R1
BU_R_R2
BU_R_R3
gene-NQ510_00005
6664
6871
8076
4732
3608
3063
gene-NQ510_00010
779
898
961
801
901
621
gene-NQ510_00015
4422
4367
4641
4154
3060
2604
gene-NQ510_00020
1948
1976
1983
2681
2063
1921
gene-NQ510_00025
1
1
3
0
2
3
gene-NQ510_00030
0
0
0
0
0
0
This matrix contains raw counts from BU experiment with 3707 genes and 6 samples.
# GFF annotation filefilegff <-case_when( nameEXP =='BA'~"../data/GFF/NC_008618_bifido_adolescentis_spikes_cazymes_dbcan.gff3", nameEXP =='BU'~"../data/GFF/CP102263_1_Bacteroides_uniformis_spikes_cazymes_dbcan_pulpred_cc.gff3", nameEXP =='BC'~"../data/GFF/NZ_AP012325_bifido_catenulatum_spikes_cazymes_dbcan.gff3", nameEXP =='ER'~"../data/GFF/NC_012781_eubacterium_rectale_spikes_cazymes_dbcan.gff3",)# use gff produced by DBCANgff <-readGFF(filegff)df_annot <- gff %>%as_tibble() %>%unnest_longer(Parent) # remove comulmn with all NAdf_annot <- df_annot %>%select_if(~sum(!is.na(.)) >0) # Remark: duplicated gene annotation# which(duplicated(df_annot[,"Parent"]))# keeep the first line when multiple annotationdf_annot <- df_annot%>%group_by(seqid, source, type, ID, Parent) %>%filter(row_number() <=1)#glimpse(df_annot)rawdata_annot <-left_join(rawdata[, 1], df_annot, by=c("Gene_ID"="Parent"), keep=FALSE) %>%as.data.frame()#glimpse(rawdata_annot)
In this BU experiment, the effect of each treatment (G, R) on gene expression will be explore. The number of biological repetitions is 3, 3 for G, R treatment, respectively.
Genes with very low counts across all libraries may be filtered.
Show the code
# Filter gene with low count, at least number of biological replicates with cpm > valfilt #summary(libsize)#valfilt <- round(10*1e06 / min(libsize), 1)valfilt <-1nbrepbio <-min(table(colData(se)$group))keep <-rowSums(edgeR::cpm(se) > valfilt) >= nbrepbio#summary(keep)se <- se[keep,]#dim(se)
The filtering on genes is based on count per million (cpm) greater than 1 in at least 3 samples corresponding to the minimum number of biological replicates. We kept 3373 expressed genes for further analyses from 6 samples.
Normalisation
A normalization factor is calculated to take into account the different sizes of the sequencing banks (i.e. the total read count) and the distribution of reads per sample on sequencing run, as discussed [1]. Normalization by trimmed mean of M values (TMM) [2] is performed by using the calcNormFactors function from edgeR R package. It calculates a set of normalization factors, one for each sample, to eliminate composition biases between libraries.
Here, the table contains library size and normalisation factors using TMM method ordered by library size. These graphs are another way of verifying the quality control carried out during the sequencing and bioinformatics analysis steps.
group lib.size norm.factors Bacteria Treatment Replicate sample
BU_R_R3 BU_R 10438360 1.0463761 BU R R3 BU_R_R3
BU_R_R2 BU_R 11668461 1.0177221 BU R R2 BU_R_R2
BU_G_R2 BU_G 11672885 0.9991146 BU G R2 BU_G_R2
BU_G_R1 BU_G 12113424 0.9809141 BU G R1 BU_G_R1
BU_G_R3 BU_G 14935441 0.9269379 BU G R3 BU_G_R3
BU_R_R1 BU_R 16150913 1.0336798 BU R R1 BU_R_R1
Multidimensional scaling (MDS) plot shows the relationships between the samples. The top (500 genes) are used to calculate the distance between expression profiles of samples. The distance approximate the log2 fold change between the samples.
As expected, samples are grouped by treatment.
Show the code
limma::plotMDS(dge, col =as.numeric(dge$samples$group), labels = dge$samples$sample, cex=0.6, top =500, main ="MDS plot top 500 genes")
1. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2012;14:671–83.
2. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010;11:R25. doi:10.1186/gb-2010-11-3-r25.
Reuse
This document will not be accessible without prior agreement of the partners
A work by Migale Bioinformatics Facility
Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, 78350, Jouy-en-Josas, France
Source Code
---params: my.interest: "BU"title: "RESTORBIOME2: Exploration and normalisation"subtitle: "Experiment with `r params$my.interest`"author: - name: Olivier Rué orcid: 0000-0003-1689-0557 email: olivier.rue@inrae.fr affiliations: - name: Migale bioinformatics facility adress: Domaine de Vilvert city: Jouy-en-Josas state: France - name: Christelle Hennequet-Antier orcid: 0000-0001-5836-2803 email: christelle.hennequet-antier@inrae.fr affiliations: - name: Migale bioinformatics facility adress: Domaine de Vilvert city: Jouy-en-Josas state: Francedate: "2023-05-02"date-modified: today#bibliography: ../../../resources/biblio.bib # don't change#csl: ../../../resources/biomed-central.csl # don't change# # Do not modify this section without taking precautions# # Don't remove the commented line, it is usefull for building the site with this new project!license: "This document will not be accessible without prior agreement of the partners"format: html: embed-resources: false toc: true toc-location: right page-layout: article code-overflow: wrap code-fold: true code-tools: true code-summary: "Show the code"---```{r}#| label = "setup",#| include = FALSEknitr::opts_chunk$set(echo =TRUE, cache =FALSE, message =FALSE, warning =FALSE, fig.height =3.5, fig.width =10.5)``````{r}#| label = "setuplib"#Use packages and functionslibrary(tidyverse)library(data.table)library(SummarizedExperiment) # manipulation RNASeq assayslibrary(rtracklayer) ## for annotation#library("DEFormats")library(edgeR)library(kableExtra)library(dplyr)library(purrr)library(stringr)library(ggplot2)library(reshape2)library(mixOmics) #PCA```# Read countsThe matrix of raw counts looks like that.```{r}#| label = "LoadRawdata"#cat("EXP = ", params$my.interest)### Get Raw Count data in edgeR object# At gene level#inputFile <- "count_allSamples_BA.csv"inputFile <-list.files("../data/counts") |>str_subset(params$my.interest)#cat("File raw = ",inputFile,"\n")rawdata <-fread(file.path("../data/counts",inputFile))# rename first column gene ID to be homogenous between assayscolnames(rawdata)[1] <-"Gene_ID"nameEXP <- params$my.interest# genecount: count matrixgeneCount <- rawdata[,-c(1)] |>as.matrix()row.names(geneCount) <- rawdata %>% dplyr::select(1) %>%unlist() %>%as.character()#row.names(geneCount) %>% head()#print(dim(geneCount))head(geneCount) %>%kbl() %>%kable_styling() %>%scroll_box(width ="100%", height ="200px")```This matrix contains raw counts from `r params$my.interest` experiment with `r nrow(geneCount)` genes and `r ncol(geneCount)` samples.This is the experimental design.```{r}#| label = "Design"# create Design from sample's names in filesampleInfo.all <-colnames(rawdata)[-c(1)] %>% stringr::str_split(., "[_]", simplify =FALSE) %>%transpose() %>% purrr::simplify_all() names(sampleInfo.all) <-c("Bacteria","Treatment","Replicate")#sampleInfo.all$sample <- paste(sampleInfo.all$Treatment, sampleInfo.all$Rep, sep="_")sampleInfo.all$sample <-colnames(rawdata)[-c(1)]Design <-as.data.frame(sampleInfo.all)Design <- Design %>%mutate( group =paste(Bacteria, Treatment, sep="_"))Design %>%kbl() %>%kable_styling() %>%scroll_box(width ="100%", height ="200px")# Design_file <- paste("../output/Design", nameEXP, ".csv", sep="")# write.table(Design, Design_file, row.names=FALSE, sep=",")```We used gene annotation produced using **DBCAN** {{< iconify mdi tools >}}.```{r}#| label = "GeneAnnotation"# GFF annotation filefilegff <-case_when( nameEXP =='BA'~"../data/GFF/NC_008618_bifido_adolescentis_spikes_cazymes_dbcan.gff3", nameEXP =='BU'~"../data/GFF/CP102263_1_Bacteroides_uniformis_spikes_cazymes_dbcan_pulpred_cc.gff3", nameEXP =='BC'~"../data/GFF/NZ_AP012325_bifido_catenulatum_spikes_cazymes_dbcan.gff3", nameEXP =='ER'~"../data/GFF/NC_012781_eubacterium_rectale_spikes_cazymes_dbcan.gff3",)# use gff produced by DBCANgff <-readGFF(filegff)df_annot <- gff %>%as_tibble() %>%unnest_longer(Parent) # remove comulmn with all NAdf_annot <- df_annot %>%select_if(~sum(!is.na(.)) >0) # Remark: duplicated gene annotation# which(duplicated(df_annot[,"Parent"]))# keeep the first line when multiple annotationdf_annot <- df_annot%>%group_by(seqid, source, type, ID, Parent) %>%filter(row_number() <=1)#glimpse(df_annot)rawdata_annot <-left_join(rawdata[, 1], df_annot, by=c("Gene_ID"="Parent"), keep=FALSE) %>%as.data.frame()#glimpse(rawdata_annot)```In this `r params$my.interest` experiment, the effect of each treatment (`r levels(as.factor(Design$Treatment))`) on gene expression will be explore. The number of biological repetitions is `r table(Design$Bacteria, Design$Treatment)` for `r levels(as.factor(Design$Treatment))` treatment, respectively.```{r}#| label = "SE"# create a SummarizedExperiment objectse <-SummarizedExperiment(assays=list(counts=geneCount),rowData=rawdata_annot, colData=Design)#print(se)#counts matrix = assay(se)#size of library#libsize <- assay(se) %>% colSums()#exemple to remove sample BT_G_Rep1#se <- se[, se$sample !="BT_G_Rep1"]#colData(se)#dim(se)#print(se)#counts matrix = assay(se)libsize <-assay(se) %>%colSums()libsize %>%kbl(col.names =c("libsize")) %>%kable_styling(full_width =FALSE)```<!-- Samples with too low depth sequencing (less than $10^7$) were removed. `r names(libsize)[which(libsize <= 10**7)]` `r libsize[which(libsize <= 10**7)]` --><!-- ```{r} --><!-- #| label = "SEremove" --><!-- #remove sample with too low depth sequencing --><!-- if (sum(libsize <= 10**7) > 0){ --><!-- se <- se[, se$sample != names(libsize)[which(libsize <= 10**7)]] --><!-- libsize <- assay(se) %>% colSums() --><!-- } --><!-- ``` -->Genes with very low counts across all libraries may be filtered. ```{r}#| label = "FiltNorm_se"# Filter gene with low count, at least number of biological replicates with cpm > valfilt #summary(libsize)#valfilt <- round(10*1e06 / min(libsize), 1)valfilt <-1nbrepbio <-min(table(colData(se)$group))keep <-rowSums(edgeR::cpm(se) > valfilt) >= nbrepbio#summary(keep)se <- se[keep,]#dim(se)```<!-- Here the cutoff of `r valfilt` for the CPM has been chosen because it is roughly equal to 10/L where L is the minimum library size in millions, for `r nbrepbio` samples corresponding to the minimum number of biological replicates. We kept `r nrow (se)` expressed genes for further analyses. -->The filtering on genes is based on count per million (cpm) greater than 1 in at least `r nbrepbio` samples corresponding to the minimum number of biological replicates. We kept `r nrow (se)` expressed genes for further analyses from `r ncol(se)` samples.# NormalisationA normalization factor is calculated to take into account the different sizes of the sequencing banks (i.e. the total read count) and the distribution of reads per sample on sequencing run, as discussed [@Dillies2012-ln]. Normalization by trimmed mean of M values (TMM) [@Robinson2010] is performed by using the `calcNormFactors` function from **edgeR** {{< iconify mdi tools >}} R package. It calculates a set of normalization factors, one for each sample, to eliminate composition biases between libraries. Here, the table contains library size and normalisation factors using TMM method ordered by library size. These graphs are another way of verifying the quality control carried out during the sequencing and bioinformatics analysis steps.```{r}#| label = "TMM"dge <-calcNormFactors(se)#cat("Ordered library size and normalisation factors TMM's method \n")# dge$samplesdge$samples[order(dge$samples$lib.size), ]# barplotp<-ggplot(dge$samples, aes(x=dge$samples$sample, y=dge$samples$norm.factors, fill=dge$samples$group)) +geom_col() +xlab("Samples") +ylab("TMM factors") +labs(fill ="group") +theme_bw() +theme(axis.text.x =element_text(angle=90)) +ggtitle("TMM size factors \n")p ``````{r}#| label = "SizeLibrary"# Library size with groupp<-ggplot(dge$samples, aes(x=dge$samples$sample, y=dge$samples$lib.size, fill=dge$samples$group)) +geom_col() +xlab("Samples") +ylab("Library size") +labs(fill ="group") +theme_bw() +theme(axis.text.x =element_text(angle=90)) +ggtitle("Library size \n")p # bp <- ggplot(dge$samples, aes(x=dge$samples$group, y=dge$samples$lib.size, fill=dge$samples$group)) + geom_boxplot() + # geom_jitter(position=position_jitter(0.1)) + theme_bw() + # theme(axis.text.x = element_text(angle=90)) +# xlab("group") + ylab("Library size") + labs(fill = "group")# bp``````{r}#| label = "Normalizeddata",#| include = FALSE# pseudo counts with log2 transformationpseudo_counts <-log2(dge$counts +1)colnames(pseudo_counts) <- dge$samples$sampledf_counts <-melt(pseudo_counts, id =rownames(pseudo_counts))names(df_counts)[1:2] <-c ("id", "sample")df_counts <-inner_join(df_counts, dge$samples[, c("sample", "group")], by=c("sample"="sample"))# pseudo normalized counts with TMM edgeR's method with log2 transformationpseudo_TMM <-log2(edgeR::cpm(dge) +1)colnames(pseudo_TMM) <- dge$samples$sampledf_TMM <-melt(pseudo_TMM, id =rownames(pseudo_TMM))names(df_TMM)[1:2] <-c ("id", "sample")df_TMM <-inner_join(df_TMM, dge$samples[, c("sample", "group")], by=c("sample"="sample"))# boxplot of pseudo countsbp <-ggplot(data=df_counts, aes(x=df_counts$sample, y=df_counts$value, fill=df_counts$group)) +geom_boxplot() +theme_bw() +ggtitle("Boxplots of pseudo counts \n") +xlab("Samples") +ylab("Library size") +labs(fill ="group") +theme(axis.text.x =element_text(angle=90)) bp# boxplot of normalized pseudo countsbp <-ggplot(data=df_TMM, aes(x=df_TMM$sample, y=df_TMM$value, fill=df_TMM$group))bp <- bp +geom_boxplot() +theme_bw()bp <- bp +ggtitle("Boxplots of normalized pseudo counts \n")bp <- bp +xlab("Samples") +ylab("Library size") +labs(fill ="group") +theme(axis.text.x =element_text(angle=90)) bp```# Multidimensional scaling plot```{r}#| label = "ACP",#| include = FALSE# with normalized countsresPCA <-pca(t(pseudo_TMM), ncomp =5)print(resPCA)plot(resPCA)plotIndiv(resPCA, group = dge$samples$group, legend =TRUE)#plotVar(resPCA, rad.in = 0.8, cex = 0.5)```Multidimensional scaling (MDS) plot shows the relationships between the samples. The top (500 genes) are used to calculate the distance between expression profiles of samples. The distance approximate the log2 fold change between the samples.As expected, samples are grouped by treatment. ```{r}#| label = "MDSplot"limma::plotMDS(dge, col =as.numeric(dge$samples$group), labels = dge$samples$sample, cex=0.6, top =500, main ="MDS plot top 500 genes")``````{r}#| label = "saveResults",#| echo = FALSEsaveRDS(se, file =paste("../output/Restorbiome_se_", nameEXP, ".rds", sep=""))saveRDS(dge, file =paste("../output/Restorbiome_dge_", nameEXP, ".rds", sep=""))```# Reproducibility token```{r}#| label = "sessionInfo"sessioninfo::session_info(pkgs ="attached")```# References